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Abstract Phase Measurement System Quantized State Estimation

This thesis presents real-time data processing in spaceflight sensing systems under onboard com-
putational constraints. Field-Programmable Gate Array (FPGA) based architectures are leveraged
for high-throughput, low-latency operations while addressing inherent performance degradation

= Optimal quantized filtering methods for finite-precision in states, inputs, and measurements.

» Quantized minimum variance estimator
» Quantized Discrete-time Kalman Filter (QDKF)

* |ntersatellite laser interferometry detects gravitational accelerations by measuring spacecraft
motion through ultra-precise optical phase metrology.

due to finite-precision arithmetic = Gravitational forces — test mass displacement — Phase change in beat note. » Quantized Square-Root Kalman Filter (QSRKF)
The first part of this thesic devel ol o front-end for interf (i ; . = Laser Interferometric Space Antenna (LISA) requirements: Phase measurement precision of " Application: Estimation of forcing input (acceleration) from optical interferometry.
The first part of this thesis develops a signal processing front-end for interferometric optomechan- 6 urad /v/Hz enabling displacement sensitivity of a 10_12m/ Ty » Approach:
ical sensing. A digital phase measurement system is conceived to enable high-precision phase
readout and tracking with minimal noise floor. Simulations are presented to analyze system perfor- . Sencor Reformulated Cilter Simulations
mance while experimental validation demonstrates the precision and reliability of the phase sensing Phasemeter System Design . ——— —| dynamics with  |— Jesaiaito —| and hardware
system. The digital phasemeter system performs real-time phase measurements using an FPGA System- quantization noise experiments
The second part focuses on optimal state estimation back-end for inertial navigation. Kalman filter on-Chip (50C) platform (Fig. 3). High-rate DSP operations execute on the FPGA fabric at the ADC
algorithms are reformulated to incorporate finite-precision numerical errors in states, inputs, and sampling frequency. A multi-stage decimation filter chain, implemented the programmable logic Sensor Dynamics and State Estimation
measurements. Performance trade-offs with numerical precision are captured to provide insights (PL) and the processing system (PS) reduces the data rate to 3.81 Hz for precision science readout. _ , .
into the best possible filter accuracy achievable for a given numerical representation. Numerical o ch " 1 Dol accelerometer sensor dynamics: perturbed harmonic oscillator
simulations and experimental results underscore the significance of modeling quantization errors § FPGA (PL) CPU (PS) F 4 2w(E + wz = g(t) + b(t) + ny(t) (» Mass displacement z for acceleration g)
into state estimation pipelines for embedded implementations. : L . 756 — b(t) = ny(t) (» Stochastic bias: Wiener process)
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Incoming laser P-hOtO FPGA § 500 kHz 1053.1 Hz 3.81 Hz " Quantized state estimation:
fi diode Af=Ffi—F ref ch ' ' » Kalman gain augments round-off error covariances as optimal weighting factors
» Amplifies covariance updates accommodating additional uncertainties due to finite-precision realization
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_ - i CNC The FPGA implements dual instances of all-digital phase-locked loop (ADPLL) cores to compute
Science Readout < > the phase difference between the input and reference channels (Fig. 4). An ADPLL is a closed- : :
_ . S . Simulations and Hardware Results
Sensor front-end High-rate sensor !oop feedback control system that. locks onto the frequency of an incoming signal and provides
. instantaneous phase values of the input.
» Embedding quantization noise into filters — Reduced errors & improved confidence (Fig. /).
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» Hardware implementation and testing — benchmarks estimation accuracy for flight compute.
Figure 2. Quantization errors in measurements (states, and inputs) degrade signal-to-noise ratio Figure 4. Phase measurement principle: Independent ADPLL cores track input and reference e—— [ ey ] By ;D | =
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Challenge: High-precision optical sensors require low-cost, resource-efficient DSP implementa- _ ‘_+ oo <
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Research Questions: The phasemeter hardware is verified using Simulink® floating-point simulations. Results from the nierece l Sooe <
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