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Abstract

This thesis presents real-time data processing in spaceflight sensing systems under onboard com-

putational constraints. Field-Programmable Gate Array (FPGA) based architectures are leveraged

for high-throughput, low-latency operations while addressing inherent performance degradation

due to finite-precision arithmetic.

The first part of this thesis develops a signal processing front-end for interferometric optomechan-

ical sensing. A digital phase measurement system is conceived to enable high-precision phase

readout and trackingwith minimal noise floor. Simulations are presented to analyze system perfor-

mancewhile experimental validation demonstrates the precision and reliability of the phase sensing

system.

The second part focuses on optimal state estimation back-end for inertial navigation. Kalman filter

algorithms are reformulated to incorporate finite-precision numerical errors in states, inputs, and

measurements. Performance trade-offs with numerical precision are captured to provide insights

into the best possible filter accuracy achievable for a given numerical representation. Numerical

simulations and experimental results underscore the significance of modeling quantization errors

into state estimation pipelines for embedded implementations.
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Figure 1. Interferometric sensing systems require high-frequency data processing operations for

science readout. Field Programmable Gate Arrays (FPGAs) enable the demanding Digital Signal

Processing (DSP) and navigation (Nav) algorithms to be deployed at the edge.
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Figure 2. Quantization errors in measurements (states, and inputs) degrade signal-to-noise ratio

(SNR) in fixed-point sensing and navigation systems.

Challenge: High-precision optical sensors require low-cost, resource-efficient DSP implementa-

tions, but quantization noise from fixed-point arithmetic degrades SNR and navigation accuracy.

Research Questions:

1. Can low-cost fixed-point DSP systems achieve high-precision optical sensor requirements?

2. How can quantization-aware algorithms optimize SNR in resource-constrained systems?

3. Can navigation filter performance be enhanced by modeling finite-precision hardware errors?

Goal: Develop signal processing systems that reduce noise floors while ensuring stable, cost-

effective DSP operation.

Key Contributions

This research advances signal processing methods for precision spaceflight applications through

integrated system and algorithm design:

High-Precision Optical Sensing: Real-time high-rate DSP system achieving microradians

phase measurement precision with fixed-point arithmetic.

Quantized Navigation Algorithms: Novel Kalman filter variants (QDKF, QSRKF) that explicitly

model and compensate for finite-precision errors in states, inputs, and measurements.

Impact: Enables low-cost, high-precision sensing and navigation systems for future space mis-

sions requiring both computational efficiency and scientific accuracy.

Phase Measurement System

Intersatellite laser interferometry detects gravitational accelerations by measuring spacecraft

motion through ultra-precise optical phase metrology.

Gravitational forces → test mass displacement → Phase change in beat note.

Laser Interferometric Space Antenna (LISA) requirements: Phase measurement precision of

6 µrad/
√
Hz enabling displacement sensitivity of ≈ 10−12m/

√
Hz.

Phasemeter System Design

The digital phasemeter system performs real-time phase measurements using an FPGA System-

on-Chip (SoC) platform (Fig. 3). High-rate DSP operations execute on the FPGA fabric at the ADC

sampling frequency. A multi-stage decimation filter chain, implemented the programmable logic

(PL) and the processing system (PS) reduces the data rate to 3.81 Hz for precision science readout.

CPU (PS)

DSP FIFO buffer

3-stage CIC

M IM O

3-stage 
CIC

500 kHz 1953.1 Hz 3.81 Hz

20 32

32

float

FPGA (PL)

 Packet UART
Tx

Science Readout 
UART Rx

3-stage 
CIC

ADC
12

i/ p ch

ADC
12

ref ch

Figure 3. FPGA-SoC for optical phase metrology: The DSP processor (Fig. 4) on the FPGA fabric

computes differential phase between input and reference channels for readout.

The FPGA implements dual instances of all-digital phase-locked loop (ADPLL) cores to compute

the phase difference between the input and reference channels (Fig. 4). An ADPLL is a closed-

loop feedback control system that locks onto the frequency of an incoming signal and provides

instantaneous phase values of the input.
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Figure 4. Phase measurement principle: Independent ADPLL cores track input and reference

signals. The differential phase measurement ∆ϕ = φ1 − φ2 provides the phase readout.

Experiments

The phasemeter hardware is verified using Simulink® floating-point simulations. Results from the

RF testbench demonstrate that, within the measurement band (0.1 mHz–1 Hz), the phasemeter
meets the LISA precision requirements above 1 mHz. NSF: Noise Shaping Function.

Figure 5. RF Benchtop testing setup for

phasemeter hardware demonstration.

Figure 6. Phase noise performance compared

6 µrad/
√
Hz LISA requirement.

Quantized State Estimation

Optimal quantized filtering methods for finite-precision in states, inputs, and measurements.
I Quantized minimum variance estimator

I Quantized Discrete-time Kalman Filter (QDKF)

I Quantized Square-Root Kalman Filter (QSRKF)

Application: Estimation of forcing input (acceleration) from optical interferometry.

Approach:
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Sensor Dynamics and State Estimation

1 DoF accelerometer sensor dynamics: perturbed harmonic oscillator

ẍ + 2ωζẋ + ω2x = g(t) + b(t) + nv(t) (I Mass displacement x for acceleration g)

ḃ(t) = nu(t) (I Stochastic bias: Wiener process)

Discretized dynamics with quantized states, inputs, and measurements (Q[·]).
Xk+1 = Φ(tk+1, tk)Q[Xk] + Γ(tk+1, tk)Q[gk] + wk (I Quantized states)

yk = [1 0 0]Q[Xk] + νk (I Discrete measurements)

Q[yk] = yk + εy,k (I A/D conversion error: εy,k)

Quantized state estimation:
I Kalman gain augments round-off error covariances as optimal weighting factors

I Amplifies covariance updates accommodating additional uncertainties due to finite-precision realization

ˆ̃X(k) = [HT
k P−1

µµHk]−1HT
k P−1

µµ(ỹ − ηkb̂) (I Minimum variance state estimate)

Pµµ = E[µµT ] = HkΣX̃HT
k + ηkΣ

b̂
ηT

k + Pν̃ν̃ + Σỹ (I Error covariance)

Simulations and Hardware Results

I Embedding quantization noise into filters → Reduced errors & improved confidence (Fig. 7).

I Steady-state covariance analysis: measurement precision v. model uncertainty and estimation

errors (Fig. 8) → Important tool for sensor selection, parameter modeling, and tuning.
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Figure 7. Estimation errors and 3σ bounds from
DKF and QDKF with 12-bit measurements.
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Figure 8. Steady-state: (Left) 1σ contours. (Right)
Mahalanobis distance of estimates.

I Hardware implementation and testing → benchmarks estimation accuracy for flight compute.
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Figure 9. Nav filter operations on FPGA-SoC.
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Figure 10. FPGA v. double-precision simulations.
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